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Spin transport for spin diffusion lengths comparable to mean free paths

D. R. Penn and M. D. Stiles
Electron Physics Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8412, USA
(Received 25 August 2005; revised manuscript received 26 October 2005; published 15 December 2005)

In perpendicular-transport structures with magnetic and nonmagnetic layers, there is a resistance associated
with changes in the value of current polarization throughout the structure. Starting from a Boltzmann equation,
Valet and Fert [Phys. Rev. B 48, 7099 (1993)] derived macroscopic transport equations to describe this effect.
Their derivation is formally justified in the limit that the spin-diffusion length of each material is long com-
pared to the mean free path of that same material, but appears to agree with experiment even for spin diffusion
lengths comparable to the appropriate mean free paths. Here, numerical studies of the Boltzmann equation
verify that their approach is accurate in this limit. In addition, we have examined the case of anisotropic
spin-flip scattering. For reasonable parameters, there is only a small difference in the resistance from the

isotropic case.
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I. INTRODUCTION

The resistance of magnetic multilayers depends on the
relative orientation of the magnetizations of the constituent
layers, an effect called giant magnetoresistance.'> The effect
occurs in two geometries, either with the current flowing in
the plane of the multilayer or with current flowing perpen-
dicular to the plane. The first of these has been the most
heavily studied (see Ref. 3 for a review) in large part because
giant magnetoresistance in this geometry is used in read
heads in hard-disk drives. The second geometry was first
investigated experimentally by a group from Michigan State
University*~© and a group from Phillips Research.” Early the-
oretical work was done by Johnson and Silsbee.®?. Much of
the history of this topic is reviewed in Refs. 10 and 11. There
has been a recent increase in interest in the perpendicular
case because it may find application in the next generation of
read heads, where a greater signal is needed. The perpen-
dicular geometry also exhibits spin transfer torques (see Ref.
12 for a review), which are also of current interest.

The “standard theory” for perpendicular transport was de-
veloped by Valet and Fert.!> In their theory, there are two
contributions to the spin polarization of the current. The first
is the spin dependence of the bulk conductivity in the ferro-
magnetic layers. The second is the diffusion of spins due to a
spatially varying spin accumulation. Wherever the spin po-
larization of the current deviates from the value expected
from the local bulk conductivity, there must be a spatially
varying spin accumulation to compensate. Thus, whenever
the materials change, there is spin accumulation near the
interfaces. Associated with this accumulation is an excess
resistance, which we refer to as an accumulation resistance to
distinguish it from the interface resistance that results from a
mismatch of electronic structures.'*!> There are closely re-
lated accumulation resistances due to spin-dependent inter-
face resistances and discontinuities in the spin chemical po-
tential, but for simplicity we ignore these in this paper.

Valet and Fert derived macroscopic transport equations
from the Boltzmann equation in the relaxation-time approxi-
mation. Their derivation assumes that the spin-flip diffusion
length in each material is large compared to the electron
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mean free path in that same material. For most of the com-
monly studied materials this condition is well satisfied. How-
ever, for the case of NigyFe,, the spin-diffusion length is on
the order of the electron mean free path.'® Despite this, their
model is able to explain experimental results in multilayers
containing NigyFey.!”

In this paper, we investigate the validity of the macro-
scopic transport equations by comparison to an exact nu-
merical treatment of the Boltzmann equation for the resis-
tance caused by spin accumulation. The numerical results are
based on a method described in an earlier paper'8 to solve
the Boltzmann equation for a model electronic structure. We
investigate N/F/N and F/N/F junctions, where F and N de-
note ferromagnetic and nonmagnetic layers. The middle
layer in both cases is referred to as the spacer layer. In both
cases, we compare results for different values of the spin
diffusion length in the ferromagnetic layers because NigyFe,,
is the principle material of interest.

We find the condition that the spin-flip diffusion length be
large compared to the electron mean free path, a condition
that Valet and Fert!3 gave for the validity of their derivation,
can be relaxed for reasonable parameters. Even when the
spin-flip diffusion length of the magnetic portion of the
multilayer is some what less than the electron mean free path
there, the macroscopic transport equations are found to be
valid to a few percent or better.

We have also tested the importance of anisotropic spin-
flip scattering. Previously, we studied the consequences of
anisotropic non-spin-flip scattering in multilayers.'® That
process is of current interest because of theoretical
suggestions!®?0 that such scattering gives rise to a depen-
dence of the resistance of the multilayers on the ratio of the
layer thicknesses to the mean free paths of the materials.
Experiments?! can be interpreted to show no such depen-
dence, or the presence of such an effect.? As part of our
present study of spin-flip scattering, we have tested a related
but distinct issue—the consequences of anisotropic spin-flip
scattering. We find that this anisotropy adds an additional
term to the relaxation-time-approximation form of the Bolt-
zmann equation as well as to the macroscopic transport equa-
tions. However, for reasonable values of the parameters, the
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exact solution of the Boltzmann equation agrees with the
solution of the macroscopic transport equations, i.e., aniso-
tropic spin-flip scattering yields essentially the same results
as isotropic spin-flip scattering.

II. THEORY

The accumulation resistance is defined to be the change in
the chemical potential relative to that due solely to the bulk
resistivities of the layers divided by the current. We calculate
the resistance from the Valet and Fert macroscopic transport
equations as well as from our exact method. These two ap-
proaches are applied to our trilayer geometry of semi-infinite
metal, spacer layer, semi-infinite metal.

We begin by briefly reviewing the theory of Valet and
Fert.!3 In this approach, the Boltzmann equation is solved in
each layer and the solutions for different layers are joined
through boundary conditions. The model presently consid-
ered includes the simplest possible boundary conditions (no
reflection and, hence, no interface resistance) so as to focus
in the behavior within each layer. The Boltzmann equation
for the case of current perpendicular to the interface, and
including spin flip scattering, is written as

af,

v, 9z

- eEvZ(;—Jz) = f o' S e(v') = e(W)PLf(v)) = £,(v)]

+Jd3v’6[e(v') —€(v)]
XPylf_(v') = f(V)], (1)

where f;, is the equilibrium distribution function, f is the
distribution function for electrons of spin s at position z and
velocity v, E=E(z) is the local electric field, and
€=(1/2)mv? in the simplified electronic structure treated in
this paper. Py(z,v,v') and Py(z,v,v’') are the spin-
conserving and spin-flip transition probabilities. In the
relaxation-time approximation, these are assumed to be iso-
tropic in velocity space. The spin-up and spin-down Fermi
energies are assumed to be equal. That is, following Valet
and Fert, we ignore the differences in the electronic structure
of the majority and minority electrons characteristic of tran-
sition metal ferromagnets and simply include spin-dependent
scattering rates. The linearized Boltzmann equation is ob-
tained by writing the distribution function as

=1+ %[(MG - ) + 8], 2)

where u° is the equilibrium chemical potential and u,(z) is
the local chemical potential for spin s electrons and g,(z,V)
is the anisotropic part of f.

In the relaxation-time approximation to the Boltzmann
equation, Valet and Fert find that

r9gs { 1 1 } Ofy g~ g 3)
U ran 8s= Z_ + 5 0 ’
7 T dz Tt

S
where the quantity ;= u,—eV(z) and V(z) is the local poten-
tial. The relaxation times for spin-flip and non-spin-flip
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events are 7" and Y o Where 77" is the transport relaxation
time for spm s, i.e., the relaxatlon time for the momentum,
whereas 7.; is the ordinary relaxation time,

s f dOP(Q)[1 - cos()]

s

= f dQPqt(Q)

Tst

1
s = f dQP{(Q)[1-cos(Q)]. 4)
Tsf

The last quantity, the transport spin-flip relaxation time, is
used below. These equations lead the macroscopic transport
equations within each layer

e djy  Hs— Mo
— = (5)
o, 0z [
. 0,0,
Js=——, (6)
e 0z

where j, is the current of spin s electrons, I
=[(1/3)(vph,) 7] is the sp1n dependent spin-diffusion
length, )\,—vF[(I/fm“S)+(l/ f)] is the mean free path, and
vr is the Fermi velocity. The second macroscopic equation is
Ohm’s law. When these equations are combined, the charac-
teristic length describing the changes in spin accumulation is
the spin-diffusion length, l;f2=l{2+112. The approximations
used to derive the macroscopic equations include the condi-
tion that the spin-diffusion length be long compared to the
mean free paths.

In the case that the spin-flip scattering is not isotropic, we
find that there is an extra term on the left-hand side of the
Boltzmann equation (3) of the form [(1/ 7'0f) (1/75™)]g_g
which leads to a modification of the macroscopic equation
(6) corresponding to Ohm’s law

0,0, (x>(cr)
= v USJS (7)

where  Ng=vg[(1/77%)=(1/7, f)]' and )\sf=vp[(1/7'gf)
—(1/7%")]"!. The other macroscopic equation (5) is un-
changed.

The theory for the numerically exact calculations is de-
scribed in Ref. 18. The distribution function in each layer
that satisfies the Boltzmann equation (without the relaxation-
time approximation) takes the form

8= 2 "Eexp(— No)xy + oz + E1(zz — zp), (8)

where k refers to a particular momentum. The §; are coeffi-
cients determined by the boundary conditions. As discussed
in Ref. 18, the \; and x;; are the eigenvalues and eigenfunc-
tions of a matrix that is directly related to the Boltzmann
equation within each layer separately. The prime in the sum-
mation implies that the two zero eigenvalues are to be omit-
ted from the summation; they are replaced by the terms that
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FIG. 1. (Color online) Accumulation resistance for N/F/N. The
accumulation resistance vs spacer layer width is shown for various
values of spin-diffusion length in the ferromagnetic layer (indicated
next to each pair of curves). The solid curves are the numerical
solutions of the Boltzmann equation, and the dashed curves are the
solutions of the macroscopic equations due to Valet and Fert.!?
Shown in the inset are the ratios of macroscopic to the numerical
calculations.

contain &, and &;. The only term that carries current is the
one proportional to &;. In the case of current parallel to the
interface there is no perpendicular current and & =0. The
quantity z; is a constant corresponding to a uniform expan-
sion of the Fermi surface and z; is determined from the scat-
tering probabilities as spelled out in the appendix of Ref. 18.
For isotropic scattering, z; <v_.

III. NUMERICAL RESULTS AND CONCLUSIONS

We examine the situation of semi-infinite metal, spacer
layer, semi-infinite metal where the metals are Cu and
NiggFe,(. The cases considered are N/F/N and F/N/F, where
in the latter case the F magnetizations are in opposite direc-
tions. We use parameters characteristic of N=Cu and
F=NigFe,,'” Ay=110 nm, \}=12000 nm, =470 nm,
AL=5.5 nm, and A= 1.8 nm. This junction composition is of
interest as I is estimated to be very small (=5.5 nm.), on
the order of \F, which violates the Valet and Fert'? assump-
tion that A <l We calculate the accumulation resistance AR
and compare it to that found from the macroscopic transport
equations of Valet and Fert for various values of the spin-
diffusion length I; and interlayer thicknesses d.

The results are shown in Figs. 1 and 2 for the cases N/F/N
and F/N/F, respectively. The accumulation resistance versus
interlayer width is shown for various values of spin-diffusion
lengths [*; also shown in the inset are the ratios of macro-
scopic to the exact calculations. The condition that the spin-
dependent mean free paths AF' be small compared to lff was
used by Valet and Fert to derive their macroscopic transport
equations is clearly more stringent than necessary as evi-
denced by the results for /,=3.16 nm, shown in both figures.
We believe that the result that the Valet and Fert model
works well even in regimes where the derivation is not jus-
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FIG. 2. (Color online) Accumulation resistance for F/N/F with
antiparallel magnetizations. The accumulation resistance versus
spacer layer width is shown for various values of spin-diffusion
length in the ferromagnetic layers (indicated next to each pair of
curves). The solid curves are the numerical solutions of the Boltz-
mann equation, and the dashed curves are the solutions of the mac-
roscopic equations due to Valet and Fert.!*> Shown in the inset are
the ratios of macroscopic to numerical calculations.

tified is not very sensitive to the values of the other param-
eters chosen.

In Fig. 1, the accumulation resistance increases with the
width of the F spacer layer because the polarization of the
current in the F layer increases. It saturates when the width
becomes larger than I and the two interfaces do not interact.
In Fig. 2, the oppositely directed magnetizations are closest
when the N layer is thinnest. Spin relaxation in the N layer
reduces the accumulation resistance from that of an F;/F,
interface to that due to two F/N interfaces. Again, there is
saturation when the interface layers are sufficiently far apart.

The results shown in Figs. 1 and 2 are for the case that the
impurity scattering (as well as the spin-flip scattering) in Cu
and NiggFe, is isotropic, in which case 7™*=7". Calcula-
tions for the case of anisotropic impurity scattering were also
carried out, and the conclusions remain the same. Allowing
the spin-flip scattering to be anisotropic modifies the macro-
scopic equations as indicated in Sec. I, but still yields results
that are within a few percent of the isotropic case.

In summary, our numerical solutions of the Boltzmann
equation show that the macroscopic equations derived from
the Boltzmann equation by Valet and Fert'® should be valid
for most situations of interest. This result provides some jus-
tification for the good agreement found between experiments
on materials with short spin-diffusion lengths and calcula-
tions based on Valet-Fert theory. In a previous paper,'® we
showed that anisotropic scattering can be accurately treated
by replacing the mean free path with an appropriately de-
fined transport mean free path. In this paper we have shown
that the macroscopic transport equations work well even
when the spin-diffusion length is comparable to the mean
free path. We also tested anisotropic spin-flip scattering and
found that it is inconsequential.
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